オープンデータを使ってアプリを作ろう

アプリケーションの作成と公開をサポートするサイト

アプリ作品の情報

forked:GenoCon 課題B サンプル

<サンプルプログラムの改変方法>
データ登録に関して: もしサンプルで登録した配列のみを利用する場合、LinkDataに新規にデータを登録する必要はありません。
サンプルデータのコピーの仕方: アプリケーション枠にある"このアプリをForkして新しいアプリを作る"(青いボタン)をクリックして、プログラムをコピーすると、JavaScriptが改変できます。
GenoConエントリーの詳細情報:
http://genocon.org/ja/challenges/assignment-b/application_method/

ここにはGenoCon2 課題Bのタイトル例とショート要旨例を示します。レポートの例は、"ReadMe"タブ(アプリケーション枠ないのグレーのタブ)の中を参考にしてください。デザインの重要なポイントを図示するなどして、デザインやプログラムのアイディアを説明してください。

タイトル:
細菌の HPS (3-ヘキスロース-6-リン酸合成酵素) と PHI (6-ホスホ-3-ヘキスロイソメラーゼ)を利用した、ホルムアルデヒドの固定

要旨:

(言語は日本語か英語での提出となります)

この課題Bサンプルでは、Chen LM, et al. (Biosci Biotechnol Biochem. 74(3):627-35. 2010.)のアイディアに従い、HPSとPHIの2つの遺伝子を導入します。その際、Chen LMらは、細菌の遺伝子をそのままシロイヌナズナに導入していますが、本サンプルでは、コドンの使用頻度をシロイヌナズナで高頻度に使われているものに置き換えます。それによりシロイヌナズナでの翻訳効率を上げ、ホルムアルデヒドの固定能の向上を目指しました。コドンの最適化においては、シロイヌナズナの全CDSを対象にコドンの使用頻度を計算し、各コドンの中で最もよく使われているコドンを使うようにしました。

0

評価指数

 いいね!
0
Loading...

アプリケーション


  • Play
  • JavaScript
  • CSS
  • HTML
  • 概要
  • 保存した実行結果

This area is for writing your GenoCon2 Report. The guidelines below are for writing a 6 section report. An image should also be included.

Title: Design for combining HPS (3-hexulose-6-phosphate synthase) and PHI (6-phospho-3-hexuloisomerase)

Name: RIKEN GenoCon

Affiliation: RIKEN The Institute of Physical and Chemical Research

Date: 2012-10-10

Abstract

Formaldehyde is known as a harmful substance to the human body and cause sick house syndrome. If there was a plant which is able to absorb formaldehyde and remove it effectively, we might be able to prevent sick house syndrome by putting the plant in the room. However, general plants have little function to absorb formaldehyde. In this design, we have used JavaScript to design DNA sequence to add such a function to a model plant.The resulting design is efficient, simple, and easy to understand example of JavaScript coding to construct a DNA sequence created by reverse transcription. There are many possibilities to improve on this design.


Introduction

Research groups led by Professor Izui of Kinki University, Professor Sakai, and Professor Kato (currently Professor of Kyoto Gakuen University) of Kyoto University are actually trying to create such dreamlike plants. They found out that by inserting two HCHO decomposing bacterium genes into a plant (Arabidopsis thaliana), the plant got a function to remove HCHO in the air. The research teams re-design a plant pathway by adding two genes. (See details of the research)


Method

Overview

  1. Obtain the HPS protein sequence
  2. Reverse-translate the obtained HPS protein sequence to DNA sequence
  3. Obtain PHI protein sequence
  4. Reverse-translate the obtained PHI protein sequence to DNA sequence
  5. Combine those two DNA sequences
  6. Register the combined DNA sequences in RIKEN SciNetS

Design Flow

The followings are basic explanation about key parts for Challenge B sample program.

 
Part A. Initialization of the program, data loading

Load the data of 5 tables (dna, promoter, protein, signal_peptide, terminator) included in the sample data (http://linkdata.org/work/rdf1s222i).


   







Part B. Create a function for getting sequence data

In this part, create a function to get sequences; We named this function as ‘getSequence’. You can change the function name.

Part C. Creation a function for reverse translation

In this part, create a function to reverse translate; We named this function as ‘reverse Translation’. You can change the function name.

Part D. Main Program

Select protein sequences registered in sample data, execute reverse translation by using the function you created in Part C, obtain DNA sequences, outputs of the execution, and display the DNA sequence in the result area.


More detail is explained in the below.











Part E. Define amino acids with the corresponding codons

In this part, amino acids are linked to codons.

*This example is not the best. You may brash up this "map" function considering with codon optimizations to Arabidopsis and/or other idea.

*DNA sequences are represented by a letter string such as `ATGC` whereas protein sequences are represented by a letter string such as `MFLIV...`.


D-1: Obtain protein sequences
Store protein sequences in a variable named “hpsSeq”.



This function selects the "protein" table based on the variable 1, and obtain the sequence data of “Q9LBW4” in the “protein” table based on the variable 2

D-2: Reverse Translation
Translate the protein sequence stored in the variable named "hpsSeq" to a DNA sequence, by using the function created in ③, and store the DNA sequence in variable named "hpsDnaSeq".

D-3: Obtain protein sequences (in a similar way to D-1)

D-4: Reverse translation (in a similar way to D-2)

D-5: Concatenate two DNA sequences
Concatenate two DNA sequences “hpsDnaSeq” (reverse translated in ④-2) and “phiDnaSeq” (reverse translated in ④-4), and store the DNA sequence in variable named “dnaSeq”.

D-6: Display the result
Display the DNA sequence “dnaSeq” in the program executing area. HTML tags are embedded in the result display area. By appending the strings of DNA sequence into the tag, the design results are displayed.





Expected Results

The plant should get the function to eliminate formaldehyde by inserting two enzymes, HPS (3-hexulose-6-phosphate synthase) and PHI (6-phospho-3-hexuloisomerase) into the Calvin Cycle of the plant.


Importance of This Design

It is known that codon usage is dependent on species. In this design, I reverse transcribed the protein sequences from Mycobacterium gastri to DNA sequences using codons with highest frequency. This is efficient, simple, and easy to understand example of JavaScript coding to construct a DNA sequence created by reverse transcription. There are many possibilities to improve on this design.


References

  • L. M. Chen, H. Yurimoto, K. Z. Li, I. Orita, M. Akita, N. Kato, Y.Sakai, and K. Izui. 2010. "Assimilation of formaldehyde in transgenic plants due to the introduction of the bacterial ribulose monophosphate pathway genes." Biosci. Biotechnol. Biochem., 2010. 74:627-635.
  • Mitsui R, Sakai Y, Yasueda H, Kato N. 2000. "A novel operon encoding formaldehyde fixation: the ribulose monophosphate pathway in the gram-positive facultative methylotrophic bacterium Mycobacterium gastri MB19." J Bacteriol.. 182:944-948.




Transgenic Arapbidopsis thaliana plant with synthesized DNA
designed by Finalist participant of the first GenoCon 2010 Challenge



jquery-1.7.1.min.js


作者 メッセージ送信
Fork元のアプリ GenoCon 's GenoCon 課題B サンプル
実行回数 200
ウェブサイト
ライセンス
Fork count 0
作成日 2012年10月23日
最終更新日 2012年10月23日

Fork元のアプリ

GenoCon 課題B サンプル 作者: GenoCon 更新日: 2012年10月23日 1245 回実行
  • このアプリ作品で入力データとして使われているデータ作品のリストです。
  • チェックボックスの選択を変更すると、入力データを変更して実行することができます。

ニュースフィード